Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine.
نویسندگان
چکیده
Rats with unilateral depletion of striatal dopamine (DA) show marked preferential use of the ipsilateral forelimb. Previous studies have shown that implementation of motor therapy after stroke improves functional outcome (Taub et al., 1999). Thus, we have examined the impact of forced use of the impaired forelimb during or soon after unilateral exposure to the DA neurotoxin 6-hydroxydopamine (6-OHDA). In one group of animals, the nonimpaired forelimb was immobilized using a cast, which forced exclusive use of the impaired limb for the first 7 d after infusion. The animals that received a cast displayed no detectable impairment or asymmetry of limb use, could use the contralateral (impaired) forelimb independently for vertical and lateral weight shifting, and showed no contralateral turning to apomorphine. The behavioral effects were maintained throughout the 60 d of observation. In addition to the behavioral sparing, these animals showed remarkable sparing of striatal DA, its metabolites, and the expression of the vesicular monoamine transporter, suggesting a decrease in the extent of DA neuron degeneration. Behavioral and neurochemical sparing appeared to be complete when the 7 d period of immobilization was initiated immediately after 6-OHDA infusion, only partial sparing was evident when immobilization was initiated 3 d postoperatively, and no sparing was detected when immobilization was initiated 7 d after 6-OHDA treatment. These results suggest that physical therapy may be beneficial in Parkinson's disease.
منابع مشابه
Neuroprotective effects of prior limb use in 6-hydroxydopamine-treated rats: possible role of GDNF.
Unilateral administration of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle (MFB) causes a loss of dopamine (DA) in the ipsilateral striatum and contralateral motor deficits. However, if a cast is placed on the ipsilateral limb during the first 7 days following 6-OHDA infusion, forcing the animal to use its contralateral limb, both the behavioral and neurochemical deficits are redu...
متن کاملProtective effect of Biarum carduchrum extract on depression and pain in Parkinson's model induced by 6-hydroxydopamine in rats
Parkinson is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. Pain and emotional disorders due to Parkinson negatively affect the quality of the patient’s life. Biarum carduchrum is an antioxidant plant with some application in traditional medicine. The aim of this study is to evaluate the protective effects of Biarum carduchrum extract on pa...
متن کاملRole of Exercise and Gdnf in an Animal Model of Parkinsons Disease: Implications for Neuroprotection
Parkinson's disease (PD) is a progressive neurodegenerative disorder resulting in part from loss of nigrostriatal dopamine (DA) neurons. Treatments act only to relieve symptoms. It is therefore essential to develop treatments that slow or reverse the neurodegenerative process. Here, I explored exercise as a potential treatment against a 6-hydroxydopamine (6-OHDA) rat model. 6-OHDA causes select...
متن کاملB Vitamins Supplement Potentiates Antiparkinsonian Effect of Flunarizine: the Behavioral and Biochemical Evidences From 6-Hydroxydopamine Animal Model
Introduction: Prominent data indicate that flunarizine (flu), a calcium channel blocker, has neuroprotective effect. However, several authors have reported that the chronic use of flu can produce drug-induced Parkinsonism. Previously, we showed that B vitamins supplement (B com) has antiparkinsonian effect. In the present study, we evaluated the effect of pretreatment with flu ...
متن کاملEvaluation of Betaine Neuroprotective Effects on 6-Hydroxydopamine-Induced hemi-Parkinsonism in Male Wistar Rats
BACKGROUND: Parkinson's disease (PD) is one of the prevalent debilitating neurodegenerative disor- ders. Accordingly, researchers are working on methods to modify PD progression. Previously, the neuro- protective effects of betaine, as a methyl donor agent in homocysteine metabolism, have been demonstrated in animal models of chronic cerebral hypoperfusion and memory deficits. OBJECTIVES: It wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 12 شماره
صفحات -
تاریخ انتشار 2001